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Nonlinear properties of cardiac rhythm abnormalities
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Many physical processes have distributions of times between events that have non-normalizable, power law
probability density functiondPDF’s). The moments of such distributions are not defined. We found that the
PDF's of the times between events of ventricular tachyarrhytiirajaid heart rateand premature ventricular
contractions have a power law form indicative of a non-normalizable distribution, and that the timing between
these events cannot be meaningfully characterized by the mean frequency of such events. The Hurst analysis
showed that there were self-similar correlations in the data. These results indicate that the physical processes
that disrupt the normal rhythm of the heart produce a fractal pattern in the timing between these events. It also
suggests that the mean and the variance of the frequency of these events may not be good measures to assess
the status of patients with these arrhythmias and determine the effectiveness of therapeutic procedures.
[S1063-651%98)01209-4

PACS numbds): 87.10+€

I. INTRODUCTION is not finite, and therefore the distribution is not normaliz-
able. The integralf,tt~2dt, will approach 0 ore, and
therefore the mean is not defined. As more data are included
dB the analysis, or the resolution is changed, the means of the
amples will not approach a finite limit. Either the increasing
ber of small values included will drive the mean toward
ero, or the few large values included will drive the mean

A. Nonclassical properties of physical systems

Classical measures of the arithmetic mean and varian
are the most used statistical measures. It is not always full
appreciated that the usefulness of these measures depends
the properties of the data satisfying certain assumptions.

the data do not match these assumptions, then the results t&wards infinity. Similarly, the correlations within the data

the analysis may not be meaningful. The basic assumption il typically have a power law fqrm proportiona}l t.ﬁa that
o ﬁgnnot be characterized by a single characteristic scale. The

sity function(PDF) is integrable and that its second momentcorl;e,:ﬁgonrz eé(rtggg (())fv '?hreael)?r%er‘ir;aenngtgl O(Iastgatlgsﬁe analvzed
is finite. When this is the case, as it is for such classical prop P y

PDF’'s as the Gaussian and Poisson distributions, then th%0 not match the assumptions of the tools used, then the

moments are defined and have finite values. In such cases, rz%sdugaﬂrggurﬁies(jleggm tgﬁ dagallj);iscl)isml?/l)grg%tvgre tlg]:?ggj?tfsulc’)f
more data are analyzed, the moments of these samples ap- 9 P ' ’

proach finite, limiting, values that we identify as the mean! e analysis will not be able to lead us toward an understand-

and the variance of the population. A physical process thaf'® of the physical mechanism that generated the data.

generates a structure with a characteristic scale can be mean. S0Me biomedical systems also exhibit self-similarity in
ingfully characterized by the mean valdé) of the data. Spatial structures or temporal procesgg$]. We will show

Correlations within the data will typically have an exponen-?he kt)r:,vmthoa:‘t ttr:f Er(:aerf Egt/v(:e:tnat?svt?crgls t?g\t grltsi(ral;,p:rigf ;:rrr:)atll
tial form proportional to exp—t/{t)). y prop

; .. match the assumptions of the classical statistical measures,
However, many physical processes generate self-similar P

structures that extend over a large range of scledd]. and thus such data cannot be meaningfully characterized by

. . . __the arithmetic mean or variance. This may have important
These data cannot be meaningfully characterized by a single . ; . ;
i . consequences for analyzing and interpreting patient data, and
mean value. The PDF will have a non-normalizable, power - . ;
i a ! . determining the physical mechanisms that generate these
law form proportional ta™®. That is, the integral

events.

fo t~adt (1) B. Heart rhythm abnormalities

Sudden cardiac death is the single most common cause of
death in the United States. It almost always arises from ab-

*Permanent address: Centrum Fizyki Teoretycznej PAN, Al. Lot-normalities in the rhythm of the heart. The heart normally
nikow 32/46, 02-784 Warsaw, Poland. contracts in an organized way that pushes blood out of the
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ventricles. When this spatial-temporal organization is lost in *
ventricular tachyarrhythmias, such as ventricular fibrillation, ’
blood is not pumped, and death occurs in a few minutes.
There is much interest in determining a measure of heart
function that presages the onset of ventricular fibrillation, so
that the timely use of drugs or electrical stimulation could be
used to prevent sudden cardiac death.

Almost all the previous nonlinear studies of heart arrhyth-
mias analyzed the time intervals between heartbeats, callec®
the R-R intervals[7-11,27. In this paper, rather than utiliz-
ing theR-R intervals, we analyzed the times between events
that disrupt the normal rhythm of the heart. The timing of the 00 o4 o8 00 o4 o8
events that we analyzed we(®) episodes of ventricular ta- (5 t © t
chyarrhythmia(rapid heart ratge and(2) premature ventricu-
lar contractions. Here we present, for the first time to our
knowledge, the PDF and Hurst analysis of the times between  -05 .
these arrhythmic events.

histogram:
slope = -4.84 0 -
12 =080

new method:
slope =-5.92
r?=00990

log(histogram)
w
1
log(PDF)

histogram:
+ slope =-1.51
r?=0.88

new method:
slope =-1.99
2 =099

1. Ventricular tachyarrhythmia (v-tach)

gram)

Ventricular tachyarrhythmias occur when the main cham-
bers of the heart, the ventricles, beat at such rapid rates thaig 20
the pumping function of the heart is severly compromised or +
completely ineffectual. It is now possible to implant cardio-
verter defibrillators in the body that detegcttach, and then 3.0
generate a strong enough electrical shock to restart the hear
into a normal rhythm. These devices can storiach event T T T T 1
times in memory over years of followup, and output them 00 log“o(t) 20 @ 00 Iogto(t) 20
when interrogated with a radio frequency transceiver. Here 10 10
we present an analysis of the times betweetach recorded FIG. 1. (8—(d) Comparison between the standard histogram
from 30 patients with these implanted devices. method and our multihistogram method used to determine the prob-

The data are from 28 patients with Telectronics 4210 ofapility density functionPDP. The PDF’s were determined for two
CPI PRx cardioverter defibrillators, 17 of whom were im- different simulated processes with 2000 interevent times. The first
planted at the Medical College of Virginia and McGuire Vet- one has an exponential distribution ext), wherek=6.0, and the
erans Administration Medical Center, Richmond, VA, andsecond one has a power law distributiort, wherea=2.0. The fit
11 at the Sentara Norfolk General Hospital, Norfolk, VA. of the functional forms is characterized by the correlation coeffi-
Additional data were obtained from two patients with CPIcientr, with higher values of indicating a better fit. In both cases
PRxIl cardioverter defibrillators from a clinical databasethe functional form and the parameter estimation is significantly
(Guidant CPI Inc, St. Paul, MN The analysis of arrhythmic better using our method.

eventj dhas typ|call3|/ be2en hbase_d don hHo(Ijter TOI’]IIOI:S tha'Ehose interevent times or the correlations between the inter-
record data over only a 24-h period. The data from the Carg,ont times. The results presented here are, to our knowl-

dioverter defibrillators are unique in that they consist of thegjge the first PDF's and self-similar correlation analysis of
detection of all thes-tach events in each patient, which cov- o times between PVC events.

ers a total time period of two years for the patient who has
had the cardioverter defibrillator for the longest time. Il. ANALYSIS

log,,(PDF)

25 —

log,o(h

2. Premature ventricular contractions (PVC's) First, we analyzed the PDF’s of the times betweetach

Another rhythm abnormality occurs when premature ven2nd PVC's. The power law form of those PDF’s suggested
tricular contractions interrupt the regular pattern. The fre-hat the mean and variance are not a meaningful measure of
quency of PVC’s on Holter monitors can identify patients atthese data, which was confirmed by a direct computation of
risk for more serious arrhythmias and a supression of thegd0se moments. Finally, we found evidence of self-similar,
abnormal beats has been used to direct medical therapy #i"d term, correlations in the interevent times.
arrhythmias. Data from the heart can be recorded over a 24-h
period by a Holter monitor worn by a patient. A Rozzin
Holter PC system was used to analyze the recordings from Estimation of the PDF’s of heart rhythm abnormalities is
six patients to detect PVC'’s and determine the time betweea difficult task, because the interevent times are distributed
events. over many time scales. The times betweaeftach events

Previous studies of PVC’s have been based almost excliextended from 20 $the resolution time of the cardioverter
sively on classical linear statistical measures. Recently, twdefibrillatorg to 493 days in this patient group. The PDF can
studies determined the fractal dimension of these events enbe determined from the histogram of interevent times. How-
bedded along a one-dimensional time ak&®,13. Neither ever, the result will depend on the size of the bins used.
of these studies determined the statistical distribution ofNarrow bins will be good estimators at short times but poor

A. PDF (probability density function)
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FIG. 3. PDF ofv-tach interevent times from all 30 patients are
FIG. 2. (a)—(f) PDF ofv-tach interevent times are plotted for six Plotted on a log-log scale. The total number of interevent times is
different patients who had the most recorded events. The numbefsl31. The PDF of the combined data also has a power law distri-
of interevent times for these patients are 156, 196, 55, 100, 7ibution of interevent times.
and 103, respectively. The straight lines on these log-log plots in-
dicate that these PDF's have a power law form. power law form witha=1.11+0.06 over five decades in
time. This may indicate some essential property of heart
ones at long times, and vice versa for wide bins. We used &unction that transcends the specific mechanisms of different
multihistogram method to improve the accuracy of the esti-disease processes. Figure 3 also shows a downward deviation
mation of the PDF. We computed histograms of different binfrom a power law form at interevent times greater than 20
sizes, evaluated the PDF from each histogram, and then cordays. This may indicate that the physiological mechanisms
bined those values to form the completed PDF. The algothat produce the longer interevent times are different from
rithm is described in Appendix A. We found that this proce-those that produce the shorter intervent times.
dure is fast and accurate in determining single exponential, PDF'’s of the times between events of PVC’s for six pa-
multiple exponential, and nonexponentipbwer law distri-  tients are shown in Fig. 4. The number of interevent times
butions from both test and experimental déitd,15. A com-  ranged from 573 to 11590 per patient. The straight lines on
parison of single exponential and power law PDF's deterthe log-log plots also indicate that these PDF's are power
mined from histograms of a fixed bin size and from thislaws proportional ta~2, where 1.32a<2.41. The PDF’s
procedure is shown in Fig. 1. from these six patients are shown together in Fig. 5. The
PDF's of the timest between events of-tach for six power law form of the PDF's extend over three decades in
patients, recorded from their cardioverter defibrillators, ardgime. The difference in the three-decade range of the PVC
shown in Fig. 2. The number of interevent times ranged frondata, compared to the five-decade range ofuttach data,
55 to 196 per patient. The straight lines on the log-log plotanay be due to the fact that the PVC data are from Holter
indicate that these PDF’s are a power law proportionalfo  recordings that are limited to a 24-h span, which is much less
where 1.0ka<1.77. There were not enough events fromthan the two-year duration ef-tach data available from the
the other 24 patients to accurately determine the PDF’s foimplanted cardioverter defibrillators.
each patient individually. The PDF determined from the The overall form of the PDF’s of the PVC’s is a power
times between events combined from all 30 patients is showlaw over a wide range of interevent times. However, there
in Fig. 3. The total number of interevent times was 1131.are also second order deviations from this form. As shown in
Even though these patients have different underlying typekig. 4, the PDF’s from all six patients deviate from a power
of heart disease and are receiving different medical therapielgw at short interevent times in a way that is characteristic of
the PDF of the combined events also has the same cohereiie more complex form @+t) 2 This may indicate that
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FIG. 4. (a)—(f) PDF of PVC interevent times are ploted for six ]
different patients. The numbers of interevent times for these pa- FIG- 6. (@—(f) The sample means and sample variances of the

tients are 3152. 896. 2705. 573. 9192 and 11590 respectivelﬁVC interevent times are plotted as a function of data length. The
The straight lines on these log-log plots indicate that these PDF’§hanges in those values indicate that the sample means do not nec-
have a power law form. essarily converge to limiting values.

there is a limiting physiological process that produces a natunential forms that are close to power laws. This power law
ral time scaleC at short times. Also, the PDF’s from some form of the PDF's indicates that there is a very broad range
patients are slightly curved rather than linear. Such CUIVE§f the times between both-tach and PVC events which

are characteristic of a stretched exponential form eft)) cannot be meaningfully characterized by the classical statis-

that approaches a power law hsapproaches[4]. Thus, tical measures of the mean and the variance.
these slightly curved PDF’s may represent stretched expo-

. B. Mean and variance

The classical analysis assumes that the sample means and

0 PVC: . . .. ey . .
R P+ PO variances will approach finite limiting values that we identify
1] . . .
O e Ps_= Ps with the population mean and variance. The power law form

that we found for the PDF’s suggested that this would not be
the case for the timing of these rhythm abnormalities. To test
this conjecture, we determined the mean and the variance of
the times between PVC events over different amounts of
data, starting with two interevent times and finishing with all
the interevent times in a given set. The results are presented
in Fig. 6, which shows that the means and the variances do
not always approach stable, limiting values, as suggested by

109, (PDFIs " Y1ts '

a the power law form of the PDF’s. There were not enough
sl : : : : : : ‘lﬂ data to perform a similar analysis on the times between
0o 05 10 15 20 25 30 35 events ofy-tach.

log o (interevent time [s)/1[s])

Thus the mean rate of the PVCwitach events that occur
FIG. 5. PDF of PVC interevent times from all six patients are Over some finite interval does not describe the data appropri-

plotted on a log-log scale. There are noticable differences betweeately, and could lead to an invalid assessment of a patient’s
the slopes of the PDF’s from different patients. clinical condition. This is an important finding because many
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FIG. 7. (a) and(b) Hurst analysis of the-tach interevent times. The analysis was performed for each datsgsetresand its surrogate
(triangles. The higher values of the Hurst exponeht)( in comparison with the surrogate data dét), indicate that there are significant
persistent correlations.

medical doctors use such measures to assess the status gihg/sical and biomedical systerfs,6,17-19.
patient. H can be determined directly by determining how the
dispersion depends on the number of values analyzed. This
C. Hurst rescaled range(R/S) can be evaluated by using the relative dispergstandard
Self-similar, long term correlations in the interevent timesd€Viation and megnFano factorvariance and meanmean

can be evaluated by methods based on fractal confefls squared deviation, or t.he Hurst rescaled ra(rge.ning sum
These methods can meaningfully analyze data with nonMinus the average, divided by the standard deviafi2@]. H
normalizable PDF’s that have the power law form of a Levycan also be determined from the PDF of the intervals formed
stable distribution. The moments of such a PDF do not exisby the time series values crossing a threstiatt and from
because they do not approach finite, nonzero values in the wavelet analysig22,23. There are minor differences in the
limit as more data are analyzed. For example, in a fractatatistical and systematic errors in these metHaqa4—24.
time series there are larger deviations from the mean as mofeor these studies, we used the classical Hurst rescaled range
values of the time series are included. Thus the dispersioanalysis described in Appendix B.
increases as more values of the time series are included. The We determined the rescaled rarfS as a function of the
dispersion determined over only one number of values isiumber,M, of data values. The straight lines on the plots of
therefore not an appropriate measure of the statistical propeg(R/S) versus logf), shown in Figs. 7 and 8, indicate the
erties of such a time series. The appropriate measure is fresence of self-similar correlations in the times between
determine how the dispersion depends on the number of vakvents ofv-tach and PVC's. Since the slop¢>0.5, these
ues analyzed. correlations were persistent, rather than antipersistent. We
The Hurst exponent is the slope of the plot of the logdetermined the statistical significance of valuesidfy com-
(dispersion vs log (number of values analyzgdWhen 0  paring them with values o computed from surrogates
<H<0.5, the self-similar correlations at all time scales areformed by randomizing the data to remove those correla-
antipersistent; that is, increases at any one time are mot#ns. The values dfl from 20 surrogates generated from the
likely to be followed by decreases over all later time scalesvalues of each original data set in random order were deter-
WhenH=0.5, the self-similar correlations are uncorrelated.mined. If there areN surrogates, the probability that the
When 0.5<H<1, the self-similar correlations at all time value of H from the data is greatest of all these values is
scales are persistent; that is, increases at any one time agqual to 1IN+ 1. We could thus determine the probability
more likely to be followed by increases over all later time that the higher value dfl from the data is statistically sig-
scales. For a time serieqt) embedded in the spa€¥(t),t) nificantly different from theH of the surrogates.
the fractal dimensio =2—-H. The value ofH has proved There were only enough data from two patients to per-
a meaningful way to characterize self-similar correlations inform the Hurst analysis on the times betweetach. In both
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we presented an analysis of the timing of events that disrupt
the rhythm of the heart. To our knowledge, this is the first
PDF and Hurst analysis of the times between episodes of
ventricular tachyarrhythmiavttach which were recorded
by implanted cardioverter defibrillators over periods up to
two years, and is a detailed analysis of the times between
episodes of premature ventricular contractiolBVC's)
0o 1t 2 3 4 o 1 2 3 4 which were recorded by Holter monitors over periods of 24

log o (number of interevent times) log, (number of interevent times) h. We found that there are fractal patterns in the timing of
@ these events common to both these abnormalities.

The power law form of the PDF’s of the times between
v-tach, over five orders in time, and PVC'’s, over three orders
in time, indicated that the statistics of these events were best

3.0

@
@o e described by non-normalizable distributions. Data from such
37;: distributions cannot be meaningfully characterized by a

mean and a variance. In fact, we showed that the mean and
the variance of the number of PVC’s per unit time did not
always reach stable, limiting values as the amount of data
analyzed was increased. These results suggest that the mean
frequency ofv-tach or PVC events will not necessarily pro-
vide good clinical measures to assess the state of patients
with heart disease or to evaluate the effectiveness of thera-
pies in treating their disease. The fractal nature of the timing
between these events was also evident in the existence of
long-range, self-similar, persistent correlations, with Hurst
exponentH>0.5, that extended over all time scales.

0 1 2 3 4 0 1 2 3 4
log,(number of interevent times)

o 1 2 3 a4 o 1 2 8 4 These results indicate that the physical process that dis-
log 4 (number of interevent times) log, o (number of interevent times) rupts the functioning of the heart produces a fractal pattern in
(e) (f time. Bassingthwaighte, Liebovitch, and W¢BEf. [5]) re-

viewed different physical mechanisms that produce such
characteristics. Properly characterizing the statistical proper-
ties in these data, which can be done in terms of the slope of
the power law PDF and the self-similar correlations of the
Hurst exponent, is a necessary first step toward developing a
physical theory of the mechanisms that generate these life-
threatening arrhythmic events.

FIG. 8. (a)—(f) Hurst analysis of the PVC interevent times. The
analysis was performed for each data(seuaresand its surrogate
(triangles. The higher values of the Hurst exponeht)( in com-
parison with the surrogate data sed,§, indicate that there are
significant persistent correlations.

cases, the correlations were persistent with valuds$ efjual
to 0.60+0.02 and 0.63 0.04. For the first patient, the values
of H of three of the 20 surrogates were larger thankhef ACKNOWLEDGMENTS
the data, indicating that thid of the data was not different

from theH of the uncorrelated surrogates at the 0.05 level of We than.k Richard N. Fogoros, M.[()Alle_gheny General
statistical significance. For the second patient, all of the vall10SPital, Pittsburgh, PAand Hugh G. Calkins, M.DiJohns

ues ofH from 20 surrogates were less than the valugdof OPKins University Hospital, Baltimore, MDfor each con-
from the data, indicating that the =0.63 of the data was tributing data on one of their PRxII patients. This work was
statistically significant wittp<0.05. Therefore, there appear SUPPOrted in part by NIH Grant No. EY06234.

to be weak persistent correlations in the times betwetth

that are on the borderline of statistical significance. APPENDIX A: EFFICIENT ALGORITHM TO DETERMINE

For the times between PVC’s, 0.ZMH <0.79, in all six THE PDF
patients, the values dfi from all 20 surrogates generated _ ) )
from each patient were less than tHeof the patient data, To determine the PDF, we computed histograms of dif-

demonstrating that these persistent correlations were statisférent bin sizes, evaluated the PDF from each histogram, and
cally significant,p0<0.05. Therefore, there are strong persis-then combined those values to form the completed PDF.
tent correlations in the times between PVC's that are statisN(K) iS the number of interevent time, in the range k
tically significant. The weaker correlations in theach data —1)At<t<kAt. The PDF att=(k—3)At is equal to

as compared to the PVC data may reflect the fact that thBl(K)/(AtNy) where Ny is the total number of interevent
v-tach data have fewer events, or that there are differerfimes. From each histogram we included, in the PDF, the

functional mechanisms that generatgéach and PVC's. values computed from the second bl 2, and continuing
for binsk>2, stopping at the first birk= k., that contains
Il CONCLUSIONS no interevent times or &= 20, whichever comes first. We

excluded from the PDF the value computed from the first
Previous statistical analysis of heart data has concentratdsin, k=1, because it includes all the times unresolved at
on a study of the time between consecutive heartbeats. HeresolutionAt. We also excluded from the PDF the values
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computed from the bink> k., or k>20 because the inter- times. The rescaled rand®'S, is the rangeR divided by the
event times in these bins are too sparse to give good estétandard deviatios We determined hovR/S depended on
mates of the PDF. We used histograms of different bin sizéhe number of interevent times. This was done by partition-
At. The size of the smallest biat,, was determined by ing the total set oN; interevent times into consecutive seg-

using the method of trial and error to find the smallest binments ofM values. The mear(x), v, and standard devia-
size for which there are interevent times in the first four binsijon, Snm, Of the interevent times(i) in the nth segment
Then the procedure described above was used to compu\mere

values of the PDF from that histogram. The next histogram nM

was formed with bin size &t,;,, and the values of the PDF (X = x(i), (B1)
were computed. This procedure was iterated so that each M- Dm+1

subsequent histogram had a bin size double the size of the oM 2
previous histogram. This was continued until the first time |1 2

that there are no interevent times in the second, third, or Snn= | W ()| (B2)

! : econt Mi=(nZDm+1
fourth bins. The complete PDF determined in this way ex-

tended over the greatest range possible because it had valuesri in the range §—1)M + 1<i<nM, we then computed
computed from small bins at short times, as well as from
large bins at long times. It also included more values at times L B
that can be computed from overlapping bin sizes. This pro- Yom()= _ ng)M+1 X(K)={(X)n,m), (B3)
duces an effective weighting of the PDF, because more val-

ues are generated at interevent times that have more eventgund the range

We found empirically that this weighting provides reliable _ SN .

least squares fits of PDF functions because time intervals Ri = max(¥n (i) = min(¥nu (i), (B4)

with more events, where the PDF is thus more accurate, argmputed the rescaled range/Q), v of that segment,
weighted more in the fit. We have found that this procedure

is accurate and robust in determining PDF's of different RIS RnM B5
forms, such as single exponential, multiple exponential, and (RIS)nm= sn (BS)
power laws.
and averaged the rescaled ranges computed from the seg-
APPENDIX B: HURST RESCALED RANGE (R/S) ments,
ANALYSIS 1 N(M)
The rangeR is the difference between the maximum and (R/S)M:(—N M)) nzl (RIS)am, (B6)

minimum of the deviation from the mean of the running sum
of the interevent times over a given number of intereventwhereN(M)=N;/M.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Random Fluctuations [11] M. Zochowski, K. Winkowska-Nowak, A. Nowak, G. Karpin-

and Pattern Growth: Experiments and Modeéslited by H. ski, and A. Budaj, Phys. Rev. &6, 3725(1997.
Stanley and N. OstrowskgKluwer, Dordrecht, 1988 [12] K. M. Stein, L. A. Karagounis, J. L. Anderson, P. Kligfield,
[2] On Growth and Form: Fractal and Non-fractal Patterns in and B. B. Lerman, Circulatio®1, 722 (1995.
Physics edited by H. E. Stanley and N. Ostrowskyartinus [13] K. M. Stein, J. S. Borer, C. Hochreiter, and P. Kliegfield, J.
Nijhoff, Dordrecht, 1985 Electrocardiology25, 178 (1992.
[3] K. Kang and S. Redner, Phys. Rev.3®, 435(1985. [14] L. S. Liebovitch, J. Fischbarg, and J. P. Koniarek, Math. Bio-
[4] R. Kopelman, Sciencg41, 1620(1988. sci. 84, 37 (1987).
[5] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. WEs#c- [15] L. S. Liebovitch and J. M. Sullivan, Biophys. &2, 979
tal Physiology(Oxford University Press, Oxford, 1994 (1987.
[6] L. S. Liebovitch, Fractals and Chaos Simplified for the Life [16] B. B. Mandelbrot,The Fractal Geometry of Naturgreeman,
SciencegOxford University Press, New York, 1988 New York, 1982.

[7] A. L. Goldberger and B. J. WesBerspectives in Biological [17] Z. Zhang, O. G. Mouritson, K. Otnes, T. Reste, and M. J.
Dynamics and Theoretical Medicine, Annals of the New York Zuckermann, Phys. Rev. Left0, 1834(1993.
Academy of Sciencd§he New York Academy of Sciences, [18] Z. Zhang, O. G. Mouritsen, and M. J. Zuckermann, Phys. Rev.

New York, 1987. E 48, R2327(1993.

[8] C. K. Peng, J. Mietus, and J. M. Mausdorff, Phys. Rev. Lett.[19] C. Yeung, M. Rao, and R. Desai, Phys. Rev. L&8, 1813
70, 1343(1993. (19949.

[9] C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, [20] J. FederFractals (Plenum, New York, 1988
Chaosb, 82 (1995. [21] M. Ding and W. Yang, Phys. Rev. &2, 207 (1995.

[10] M. G. Rosenblum and A. L. Goldberger, Natytendon 383 [22] A. Arneodo, E. Bacry, P. V. Graves, and J. F. Muzy, Phys.
323(1996. Rev. Lett.74, 3293(1995.



PRE 59 NONLINEAR PROPERTIES OF CARDIAC RHYTHM! . .. 3319

[23] J. Arrault, A. Arneodo, A. Davis, and A. Marshak, Phys. Rev. [26] J. B. Bassingwaighte and G. M. Raymond, Ann. Biomed. Eng.
Lett. 79, 75 (1997. 22, 432(1994.
[24] L. S. Liebovitch and W. Yang, Phys. Rev.36, 4557(1997). [27] S. Thurner, M. C. Feurstein, and M. C. Teich, Phys. Rev. Lett.
[25] H. E. Schepers, J. H. G. M. van Beek, and J. B. Bassing- 80, 1544(1998.
thwaighte, IEEE Eng. Med. Biol. Ma@2, 52 (1992.



